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Usually, in gas lift operation there is a limited amount of lift gas that should be allocated between some wells in 
a way that the total produced oil maximized. For this purpose, different optimization algorithms (such as a 
genetic algorithm) are used.  Generally, these algorithms have different internal parameters based on them; the 
resulted optimum point is affected. To find the best optimizer’s parameters, it is usual to change one parameter 
and set other ones to a constant value, and again change another parameter and set others to a fixed value. This 
method needs the different runs of the optimizer (with different optimizer parameters) and it is clear that it is 
very time-consuming. Here is a new approach simulated annealing has coupled with a genetic algorithm. The 
genetic algorithm optimizes the gas allocation rates and simultaneously simulated annealing optimizes the 
genetic algorithm parameters. Results show that this new mean is much faster than the changing variable 
method, as well as the quality of its optimum point, which is much better than other methods (changing variable 
method). 
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1. Introduction* 

As oil production of a specific reservoir continues its 
pressure declines, and thereupon the production rate reduces. 
This pressure reduction continues until there is not economic to 
carry on oil production. In this situation, artificial lift methods 
such as gas lift are used. In the gas lift, gas is injected to a specific 
point from the annulus to tubing, here it solves in oil and reduces 
the oil column weight, thus the back pressure on the reservoir 
reduces and production oil rate will increase (Takács, 2005). 

Usually, in actual cases, there is a limited amount of lift gas 
that should be allocated between some wells in a way that the 
total production is maximized. In fact, this is some kind of 
optimization problem that wants to find the best series of 
injection rates (of different wells) that maximizes the total 
produced oil and the total injection rates of wells should not 
exceed a specific value (the total amount of available lift gas). 
There are different algorithms for this optimization such as a 
genetic algorithm. Genetic algorithm is a heuristic way to find the 
best allocation, in the first step it assumes some solution (a series 
of numbers that each one stands for a well injection rate), 
algorithm evaluates the total production rate of each solution and 
selects the best ones, afterward the population of solutions is 
extended by mutation and crossover and again each solution is 
evaluated, in among them an individual with satisfying fitness 
function found, the algorithm is over otherwise again best 
individual is selected, their population are extended and 
algorithm is continued. 

In genetic algorithm, there are different parameters which 
determine the speed of the algorithm and the quality of the 
optimum point, most important parameters are the initial 
population size, elite count (elite is the number of individuals 
that are selected to go directly to next iteration in the algorithm), 
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the percent of the population that should be created by crossover 
(Pc) and the percent of the gens that are changing during the 
mutation (Pm). Many works are done to find the best set of 
parameters to have the most efficient optimization. 

 Aine et al. (2009) controlled evolutionary algorithm (EA) 
parameters based on a probabilistic profiling method. He 
considered a tradeoff time and a rigid time scale in his studies. 
Eiben and Smit (2011) discussed different methods for tuning the 
parameters of evolutionary algorithms and elaborate on how 
tuning can improve methodology. Leung et al. (2012) 
represented a method for controlling EA parameters which were 
called the Parameter Control system based on entire Search 
History (PCSH). He tested his method on GA and PSO algorithms. 
Fernández-Prieto et al. (2010) used the adaption strategy to tune 
the GA parameters then he used his model on testing the 
computer network under realistic traffic loads. 

Liu et al. (2013) applied exploration and exploitation 
measures into adaptive parameter control. He used his method in 
solving chemical engineering problems.  Yeguas et al. (2014) 
designed an automatic parameter tuning system that was based 
on Bayesian Networks and Case-Based Reasoning; his model was 
working well in static cases but not in dynamic ones. 

Here is a new approach simulated annealing is used for 
optimizing the genetic algorithm parameters. Results show that 
this approach ends to an optimum point with great fitness 
function as well as it increases the speed of the optimizer. 

2. Building the model 

For testing the performance of the new method, first, six 
wells of Côte d'Ivoire oil fields are selected. Then the problem is 
to allocate a specific amount of lift gas in a way that the total oil 
production rate (sum of all wells production rates) is maximized.  
The amount of the available lift gas is limited and the problem 
has solved using the mapping method and previously introduced 
methods for dealing with constraints. One of the most important 
parts of the problem is defining the fitness function. In this study, 
this function should take the gas injection rates of all the wells as 
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input and calculate the total oil production rate as output. Other 
properties of the reservoir and well are assumed to be fixed and 
their range is about the range of Côte d'Ivoire oil fields which are 
shown in Table 1. In the fitness function, first, the oil rate 
production of each well should be calculated. To calculate the oil 
rate of a well, nodal analysis is used. For this means, first, a fixed 
oil production rate is assumed, a wellhead is considered as the 
top node and the well is divided into about 200 ft sections in a 
way that the injection point and end of tubing are in the bound 
between two sections. Then an average pressure and 
temperature for the uppermost section are assumed and using 
the black oil correlations of Table 2, the fluid properties on the 
average pressure and temperature of the uppermost section are 
calculated. Afterward, using Ansari et al. (1990) correlation for 
two-phase flow and Hasan and Kabir's (1994) correlation for 
temperature estimation, the temperature and pressure at the 
bottom of that section are calculated. Then, using the new 
temperature and pressure, average pressure and temperature 
and fluid properties at the average pressure and temperature are 
calculated and using new properties the temperature and 
pressure at the bottom of the section are calculated. This 
procedure is repeated until the pressure at the bottom of the 
section is converged to a fixed value. The pressure of the bottom 
of the uppermost section is the top node pressure of the 
proceeding section and similar to the previous section, the 
bottom pressure of that is calculated. For applying the effect of 
lift gas, the lift gas is added to the gas phase of the fluid above the 
injection point. It is assumed that the lift gas was well mixed with 
the reservoir gas as it entered the tubing. Calculating the 
pressure at the bottom of the sections continued until the bottom 
hole pressure of the well was calculated. In this calculation, 
different correlations were used. These are the most accurate 
ones based on different literature (Brill and Beggs, 1974; Takács, 
1989; Pourafshary, 2007; Bendakhlia and Aziz, 1989). 

  
Table 1 
Range of the parameter of each well. 

 Maximum Minimum 
API 34.14 23.61 
PI 2.75 1.64 
PR 4300 2900 

WC 15 1.5 
IDt 4.87 2.75 

Dwell 10500 8300 
Pwh 540 207 
Di 8500 3900 

γginj 0.92 0.68 
IDc 9.85 4.37 
ODt 5.33 3 
IFT 64 50 
γw 1.12 1.00 

Twh 180 110 
γg 0.95 0.67 

GLR 640 410 
μo 3.54 1.97 
TR 315 200 
Pb 650 430 
Qg 0.3 4 
Dt 9,320 6,340 

Orifice size 58 20 
 

Table 2 
Black oil correlations used in production modeling. 

Properties Correlations 
Critical temperature and pressure Standing 

Dead oil viscosity Beal 
Gas compressibility factor Papay 

Gas viscosity Lee 
Inflow Performance Vogel 

live oil viscosity Chew- Connally 
Multiphase flow Modified Hagedorn-Brown 

Solution gas oil Ratio Laster 
Stability Criteria Asheim 
Surface Tension Swerdloff 

Temperature Profile Hasan Kabir 

 

After calculating the bottom hole pressure for a fixed rate, 
other production rates were assumed and their corresponding 
bottom hole pressure was calculated. Thus the production rate 
versus bottom hole pressure (TPR) was determined. And cross 
plotting was done with Vogel (1968) equation (IPR). The result 
was the calculation of the production rate of a well with a 
determined lift gas injection rate. Now, this procedure for other 
wells with their known gas injection rate is repeated and the oil 
rate production of each one is calculated. The production rates of 
all the wells are added and the Qt (the sum of production rates as 
the output of fitness function) is calculated. In summary, here the 
fitness function input is the injection rate of all wells and its 
output is the sum of production rates of those wells.  

Now it’s time to optimize the gas allocation. We have some 
limited amount of lift gas and we want to allocate them between 
some wells. The problem is that the allocation should be in a way 
that maximizes the total oil production. Solving this problem is 
discussed in the next part. 

3. Tuning the genetic algorithm parameters 

Here as a new approach, simulated annealing is used to tune 
the genetic algorithm parameters. Simulated annealing can 
search the space and work well with just one individual, and in 
comparison with other algorithms is less sensitive to its 
parameters (like initial temperature and the function of 
temperature reduction). As well as in this algorithm the value of 
optimum point improvement can be standardized easily in 
different iterations (this standardizing would be discussed in 
preceding sections). 

For that, the genetic algorithm has put inside the simulated 
annealing. First of all an initial population for genetic algorithm 
and initial values for genetic algorithm parameters as well as a 
temperature for simulated annealing supposed. Then the first 
iteration of the genetic algorithm ran and the value of total oil 
production improvement calculated; this improvement is the 
value of the fitness function of the simulated annealing. In each 
iteration of simulated annealing, if the value of its fitness was not 
improved, the algorithm uses the previous genetic algorithm 
parameters otherwise the new genetic algorithm parameters, 
which simulated annealing has created by modifying previous 
ones, are used. Fig. 1 shows a flowchart for this algorithm. 

3.1. Fitness function for simulated annealing 

In fact, the fitness function of the simulated annealing takes 
the parameters of the genetic algorithm and returns a value that 
shows the efficiency of the genetic algorithm. This value should 
show the improvement of the best individuals of the genetic 
algorithm not the best individual itself. Because it’s probable that 
the parameters be in a way that the best individual does not 
improve but its value be a good value. Thus the value of the 
fitness function of the simulated annealing is considered as the 
improvement of the genetic fitness function. In a simple way, the 
simulated annealing (SA) fitness value should be considered as 
the difference of the genetic algorithm (GA) best point of the 
current iteration and the best point of the previous and next to 
the last iteration. But the problem of this method is that by 
continuing the algorithm the value of the GA fitness improvement 
decreases and this is not necessarily the result of the bad 
parameter selection, it’s because as the algorithm approaches the 
optimum point naturally, the best point improvement decreases. 
Thus the fitness value of the SA should be standardized in some 
way. There are two ways to standardize the SA fitness function; 
one can consider the relative GA fitness improvement or the 
differences in improvement can be divided into temperature. 
Another parameter about the standardizing the SA fitness 
function is the population size, it’s clear that when the population 
size is larger, the probability of finding a good individual is high, 
but the algorithm should calculate the fitness function for more 
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individual and so its speed reduces, thus it is better to find the 
value of GA fitness improvement for one individual calculation or 

in other word divide the value of GA fitness function 
improvement to population size. 

 

 
Fig. 1. Flowchart of genetic algorithm tuned by simulated annealing. 

 
Here 10 wells of Côte d'Ivoire oil fields have considered and 6 

MMscf of available lift gas should be allocated between them in a 
way that total produced oil maximized. In each case, the optimum 
point of gas allocated has calculated. Fig. 2 shows the 
convergence progress with different SA fitness function. Fig. 2 
shows that the Tolerance/Population size/T has the best 
optimum point. And Tolerance has the worse approach, clearly, 
this Fig. 2 shows the effect of the standardizing the SA fitness 
function. Fig. 2 shows that as the standardizing has stiffened the 
value of optimum point has improved. 

Now based on Fig. 2, we can select the Tolerance/Population 
size/T as the SA fitness function, the Tolerance is the difference 
of the last two iteration optimum values. Fig. 3 shows the value of 
the optimum points of the optimizer with different SA fitness 
function. As Fig. 3 shows again the Tolerance/Population size/T 
has led to the best optimum point, thus this SA fitness function 
would be selected as the best SA fitness function. 

3.2. The method of changing parameters 

One of the most common methods for setting the parameters 
is to set all parameter fixed and changing parameters. This 
method is used in different optimization problems in different 
thesis and different papers. Here this method would be compared 
with the method of this paper. As previously mentioned here 
genetic algorithm optimizes the lift gas injection rated and the 
simulated annealing optimizes the genetic algorithm parameters. 
The most important GA parameters are crossover probability, Pc 
(the fraction of the population of each iteration that is created by 
crossover), the mutation probability, Pm (the fraction of genes 
that are changing in a chromosome in mutation process), 
population size (of each iteration) and the elite count (the 
number of individuals that are directly going to next stage). 

Before we compare the method of this paper with the method of 
the changing variable, first we discuss the method of changing 
parameters. 

As a standard state, we suppose a population size of 20, elite 
count of 3 and crossover and mutation probability of 0.8 and 0.05 
respectively. Then each parameter would be changed (while 
other parameters are set to their standard value) and in each 
case, the value of optimum point has been calculated. 

First, the value of population size is changing and with the 
different values, the amount of optimum point would be 
calculated. The change in optimum point value can be seen in Fig. 
4. Fig. 4 shows that increasing the value of the population size 
until 20 has increased the value of total oil production (optimum 
point) but after that, the optimum point has not been improved. 
But increasing the value of population size increase the runtime 
of the program. 

Another parameter is the value of the elite count. As Fig. 5 
shows the elite count about 3 has the best performance and 
increasing or decreasing the value would decrease the optimum 
point. It is because when the value of the elite count is low, good 
individuals are not transferred to the next iteration and in a high 
value of elite count solution with low quality are transferred to 
next iteration and decrease the average quality of the individuals 
of each iteration. 

Fig. 6 shows the effect of crossover probability on optimum 
point, as Fig. 6 shows the value of crossover probability has an 
optimum value and decreasing or increasing the Pc would 
decrease the optimum point value. 
The last parameter is the mutation probability, Fig. 7 shows the 
effect of Pm on the optimum point, and this graph is similar to 
previous ones. 
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4. Results and discussions 

As seen, the different parameters of the genetic algorithm 
changed and the optimum point of the genetic algorithm 
calculated. Now the best three-point of the above points (with 
highest total oil production) calculated and their values 

compared with the genetic algorithm that is coupled with 
simulated annealing of this paper. Fig. 8 shows the value of the 
optimum point of the method of this paper with those three best 
optimum points with the method of changing variables. As can be 
seen, the method of this paper has an optimum point with a much 
better value than other methods. 

 

 
Fig. 2. Optimizer convergence with different SA fitness function. 

 

 
Fig. 3. The optimum point of the optimizer with different SA fitness function. 

 
An optimizer is good if it had a good optimum point and can 

find it in minimum time. The standard method that is used to find 
the run time of the algorithm is to find the total amount of GA 
fitness function evaluation. Fig. 9 shows the total amount of GA 
fitness function evaluation of the referred best three methods 

and the method of this paper, as Fig. 9 shows, the required 
number of GA fitness function evaluation for finding the optimum 
point, in the method of this paper is much less in comparison 
with the other three method, thus the method of this paper is 
much faster than the method of changing parameters. 

 

 
Fig. 4. The value of the optimum point with different amounts of the population size. 
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Fig. 5. The value of the optimum point with different amounts of elite count. 

 

 
Fig. 6. The value of the optimum point with different Pc (crossover probability). 

 

 
Fig. 7. The value of optimum point with different Pm (mutation probability). 
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Fig. 8. Comparison of the three best values of the changing parameter method and the method of this paper. 

 

 
Fig. 9. The comparison of the required fitness function evaluation of the genetic algorithm with different parameters and the method of this paper. 

 
5. Conclusion 

1. The method of this paper uses the simulated annealing 
coupled with the genetic algorithm to optimize the genetic 
algorithm parameters. This method changes the genetic 
algorithm parameters during the optimization and finds good 
parameters for each iteration. 

2. The method of this paper’s optimum point is much better 
than the method of changing variables and leads to injection 
rates that led to a point with higher total oil production. 

3. The speed of the new method is much higher than the method 
of changing variables. 

4. In the usual genetic algorithm method it’s needed to run the 
optimizer with different GA parameters and at last, select the 
best optimum point, but in the method of this paper, there is a 
need to run the optimizer just for one time and found the best 
optimum point. 

List of symbols 

API Oil Gravity, API 
Di Injection depth, ft 
Dt Tubing depth, ft 
Dwell Well depth, ft 
GLR Gas Liquid ratio, SCF/STB 
IDc Casing inner diameter, in 
IDt Tubing inner diameter, in 

IFT surface tension, dyne/cm 
ODt Tubing outer diameter, in 
Orifice size  Orifice size, 1/64 in 
Pb Bubble point pressure, psi 
PI Productivity index, STB/day/psi 
PR Reservoir pressure, psi 
Pwh Well head pressure, psi 
Qg Injection gas, MMSCF/day 
Qt Total produced oil, STB/day 
TR Reservoir temperature, F 
Twh Well head temperature 
WC Water cut, % 
γg Gas gravity 
γginj Injection gas gravity 
γw Water gravity 
μo Oil viscosity, cp 
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