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In the recent years, as an alternative of the traditional process quality management methods, such as Shewhart 
statistical process control (SPC), artificial neural networks (ANN) have been widely used to recognize the 
abnormal pattern of control charts. A common problem of existing approaches to control chart patterns (CCPs) 
recognition is false classification between different types of CCPs that share similar features in a real-time 
process-monitoring scenario, in which only limited pattern points are available for recognition. This study 
presents an automatic recognition system for control chart patterns recognition based on bees algorithm (BA) 
and artificial neural networks. In this study, BA is used for reducing the dimension of CCPs database and ANN is 
used for intelligent classification. The proposed BA +ANN system performance is compared with ANN model. 
The dimension of input feature space is reduced from nine to four by using BA. The proposed method 
(BA+ANN) uses a multiplayer perceptrons (MLP) neural network as pattern recognizer. The MLP architecture 
has been successfully applied to solve some difficult and diverse problems in modeling, prediction and pattern 
classification. Simulation results show that the proposed method (BA+ANN) has very high recognition accuracy. 
This high efficiency is achieved with only little features, which have been selected using BA. 
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1. Introduction* 

Control charts are the one of the simplest monitoring tools 
and by the implementations of this tool the information obtained 
about the process is either is in control or out of control. If the 
process is in control, the operator or user can precedes the 
process under the same conditions. Conversely, the operator or 
user must identify the root causes of events happened in the 
process. 

CCPs can exhibit six types of pattern: normal (NR), cyclic 
(CC), upward trend (UT), downward trend (DT), upward shift 
(US) and downward shift (DS) (Montgomery, 2007). Except for 
normal patterns, all other patterns indicate that the process 
being monitored is not functioning correctly and requires 
adjustment. Fig. 1 shows six pattern types of control chart. 

In recent years, several studies have been performed for 
recognition of the unnatural patterns. Some of the researchers 
used the expert systems (Swift and Mize, 1995; Evans and 
Lindsay, 1988). The advantage of an expert system or rule-based 
system is that it contains the information explicitly. If required, 
the rules can be modified and updated easily. However, the use of 
rules based on statistical properties has the difficulty that similar 
statistical properties may be derived for some patterns of 
different classes, which may create problems of incorrect 
recognition.  

 Also, artificial neural networks (ANNs) have been widely 
applied for classifiers.  ANNs can be simply categorized into two 
groups comprising supervised and unsupervised. Most 
researchers (Le et al., 2004; Pharm and Oztemel, 1995; Cheng 
and Ma, 2008; Sağıroğlu et al., 2000; Pham and Oztemel, 1994) 
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have used supervised ANNs, such as multi-layer perceptron 
(MLP), radial basis function (RBF), and learning vector 
quantization (LVQ), to classify different types of CCPs. 
Furthermore, unsupervised methods, e.g. self-organized maps 
(SOM) and adaptive resonance theory (ART) have been applied 
to fulfill the same objective in other studies (Wang et al., 2007). 
The advantage with neural network is that it is capable of 
handling noisy measurements requiring no assumption about the 
statistical distribution of the monitored data. It learns to 
recognize patterns directly through typical example patterns 
during a training phase.  

 Some of the researchers used the support vector machine to 
CCP recognition. The accuracy of an SVM is dependent on the 
choice of kernel function and the parameters (e.g., cost 
parameter, slack variables, margin of the hyper plane, etc.). 
Failure to find the optimal parameters for an SVM model affects 
its prediction accuracy (Campbell and Cristianini, 1998). 

Most the existing techniques used the unprocessed data as 
the inputs of CCPs recognition system. The use of unprocessed 
CCP data has further problems such as the amount of data to be 
processed is large. On the other hand, the approaches which use 
features are more flexible to deal with a complex process 
problem, especially when no prior information is available. If the 
features represent the characteristic of patterns explicitly and if 
their components are reproducible with the process conditions, 
the classifier recognition accuracy (RA) will increase (Pacella et 
al., 2004). Features could be obtained in various forms, including 
shape features (Wani and Rashid, 2005; Gauri and Chakraborty, 
2009; Pham and Wani, 1997), multi-resolution wavelet analysis 
and statistical features (Hassan et al., 2003).  

Based on the published articles, there exist some important 
issues in the design of automatic CCPs recognition system which 
if suitably addressed, lead to the development of more efficient 
recognizers. One of these issues is the extraction of the features. 
In this article for obtaining the compact set of features which 
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capture the prominent characteristics of the CCPs, a proper set of 
the shape features and are proposed.  

 

 
Fig. 1. Six various basic patterns of control charts: (a) normal pattern, (b) 

cyclic pattern, (c) upward trend, and (d) downward Trend, (e) upward shift, 
(f) downward shift. 

 

Unnecessary features increase the size of the search space 
and make generalization more difficult. Irrelevant and redundant 
features increase the search space size, making patterns more 
difficult to detect and making it more difficult to capture rules 
necessary for forecasting or classification, whether by machine or 
by hand. In addition, the more the features, the higher the risk of 
over fitting. The probability that some features will coincidentally 
fit the data increases, unless the sample size grows exponentially 
with the number of features. Furthermore, in most practical 
applications, we want to know the collection of core variables 
that are most critical in explaining an event. For this respect, in 
this study, Bees algorithm (BA) (Pham et al., 2006) is chosen as 
an optimization technique to optimize the input feature subset 
selection. This technique will improve the MLP performance.  

Another issue is related to the choice of the classification 
approach to be adopted. The developed method uses a 
multiplayer perceptrons (MLP) as pattern recognizer. The MLP 
architecture has been successfully applied to solve some difficult 
and diverse problems in modeling, prediction and pattern 
classification (Haykin, 1999). 

This article is organized as follows. Section 2 describes the 
data and features. Section 3 describes the MLP and BA. Section 4 
shows some simulation results and finally Section 5 concludes 
the article.  

2. Data description and features 

2.1. Data description 

For this study, each pattern was taken as a time series of 60 
data points. The following equations were used to create the data 
points for the various patterns (Wani and Pham, 1999): 

 
 Normal patterns: 

 
𝑝(𝑡) = 𝜂 + 𝑟(𝑡)𝜎                                                                                        (1) 

 
 Cyclic patterns: 

 
 𝑝(𝑡) = 𝜂 +  𝑟(𝑡)𝜎 + 𝑎𝑠𝑖𝑛(2𝜋𝑡/𝑇)                                                        (2) 

 
 Increasing trend patterns: 

 
𝑝(𝑡) = 𝜂 + 𝑟(𝑡)𝜎 + 𝑔𝑡                                                                                 (3) 

 
 Decreasing trend patterns: 

 
 𝑝(𝑡) = 𝜂 + 𝑟(𝑡)𝜎 − 𝑔𝑡                                                                             (4) 

 
 Upward shift patterns: 

 
𝑝(𝑡) = 𝜂 + 𝑟(𝑡)𝜎 + 𝑏𝑠                                                                                 (5) 

 Downward shift patterns: 
 

𝑝(𝑡) = 𝜂 +  𝑟(𝑡)𝜎 –  𝑏𝑠,                                                                            (6) 
 

where η is the nominal mean value of the process variable under 
observation (set to 80), σ is the standard deviation of the process 
variable (set to 5), 𝑎 is the amplitude of cyclic variations in a 
cyclic pattern (set to 15 or less), 𝑔 is the gradient of an increasing 
trend pattern or a decreasing trend pattern (set in the range 0.2 
to 0.5), 𝑏 indicates the shift position in an upward shift pattern 
and a downward shift pattern (𝑏 = 0 before the shift and  𝑏 = 1 
at the shift and thereafter), 𝑠 is the magnitude of the shift (set 
between 7.5 and 20), 𝑟(.) is a function that generates random 
numbers normally distributed between -3 and 3, 𝑡 is the discrete 
time at which the monitored process variable is sampled (set 
within the range 0 to 59), 𝑇 is the period of the cycle (set 
between 4 and 12 sampling intervals) and 𝑝(𝑡) is the value of the 
sampled data point at time 𝑡. 

2.2. Shape features 

The shape features used by the CCP recognizer in this study 
are such that they facilitate recognition of CCPs quickly and 
accurately. The six types of CCP considered in this work have 
different forms, which can be characterized by a number of shape 
features. In Pham and Wani (1997), the authors have introduced 
nine shape features for discrimination of the CCPs. These features 
are as follows: 

 
1) S: The slope of the least-square line representing the pattern. 

The magnitude of S of this line for normal and cyclic patterns 
is approximately zero, while that for trend and shift patterns 
is greater than zero. Therefore S may be a good candidate to 
differentiate natural and cyclic patterns from trend and shift 
patterns. 

2) NC1: The number of mean crossings, i.e. the crossings of the 
pattern with the mean line. NC1 is small for shift and trend 
patterns. It is highest for normal patterns. For cyclic patterns, 
the number of crossings is intermediate between those for 
normal patterns and shift or trend patterns. This feature 
differentiates normal patterns from cyclic patterns. It also 
differentiates normal and cyclic patterns from trend and shift 
patterns. 

3) NC2: The number of least-square line crossings. NC2 is 
highest for normal and trend patterns and lowest for shift 
and cyclic patterns. Thus it can be used for separation of 
natural and trend patterns from others. 

4) Cyclic membership (cmember): This feature indicates how 
closely a pattern resembles a cyclic pattern. It is possible that 
if complete cycles are not present then the slope of a cyclic 
pattern may not be equal to zero but may lie in the range for 
trend and shift patterns. For such situations, a cyclic 
membership function is defined which gives a measure of 
how closely a pattern resembles a cycle. The membership 
function, detailed later, produces a positive value for cyclic 
patterns and a negative value for all other patterns. This 
feature therefore differentiates cyclic patterns from other 
patterns. 

5) AS: The average slope of the line segments. In addition to the 
least-square line which approximates the complete pattern, 
each pattern also has two line segments which fit the data 
starting from either end of the pattern. The average slope of 
the line segments for a trend pattern will be higher than for 
normal, cyclic and shift patterns. This feature therefore 
differentiates trend patterns from other patterns. 

6) SD: The slope difference between the least-square line and 
the line segments representing a pattern. The SD value is 
obtained by subtracting the average slope as of the two line 
segments from the slopes of the least-square line. For normal, 
cyclic and trend patterns, the least-square line and the line 

0 20 40 60
20

25

30

35

40

a

0 20 40 60
10

20

30

40

50

b

0 20 40 60
20

25

30

35

40

45

50

c

0 20 40 60
-10

0

10

20

30

40

d

0 20 40 60
20

25

30

35

40

45

50

e

0 20 40 60
0

10

20

30

40

f



P. K.  Wong, A. Chua / Annals of Electrical and Electronic Engineering 2(4) 8–13 

 10  

 

segments will be different. Thus, the SD will have a high value 
for a shift pattern and small values for normal, cyclic and 
trend patterns. This feature therefore differentiates a shift 
pattern from other patterns. 

7) APML: The area between the pattern and the mean line. The 
APML is lowest for a normal pattern. Thus, this feature 
differentiates between normal and other patterns.  

8) APSL: the area between the pattern and its least-square line. 
Cyclic and shift patterns have a higher APSL value than 
normal and trend patterns and therefore the APSL can be 
used to differentiate cyclic and shift patterns from normal 
and trend patterns. 

9) ASS: The area between the least-square line and the line 
segments. The value of this feature is approximately zero for 
a trend pattern and is higher for a shift pattern. This feature 
thus differentiates trend patterns from shift patterns. 

3. Needed concepts 

3.1. Multi-layer perceptron (MLP) neural networks 

An MLP neural network consists of an input layer (of source 
nodes), one or more hidden layers (of computation nodes) and an 
output layer. The recognition basically consists of two phases: 
training and testing. In the training stage, weights are calculated 
according to the chosen learning algorithm. The issue of learning 
algorithm and its speed is very important for the MLP model. It is 
very difficult to know which training algorithm will be the fastest 
for a given problem. It depends on many factors, including the 
complexity of the problem, the number of data points in the 
training set, the number of weights and biases in the network, the 
error goal, and whether the network is being used for pattern 
recognition (discriminant analysis) or function approximation 
(regression). In this study the following learning algorithms are 
considered. 

3.1.1. Back-propagation with momentum (BP with 
momentum) 

The BP algorithm makes use of gradient descent with a 
momentum term to smooth out oscillation (Haykin, 1999). Eq. 
(21) gives the weight update for BP with momentum: 

 

𝛥𝑊𝑖𝑗(𝑡 + 1) = −𝜀
𝛿𝐸

𝛿𝑊𝑖𝑗
(𝑡) + 𝜇

𝛿𝐸

𝛿𝑊𝑖𝑗
(𝑡 − 1)                                        (7) 

 
where 𝑊𝑖𝑗  represents the weight value from neuron j to neuron i, 

𝜀 is the learning rate parameter, and E represents the error 
function. It adds an extra momentum parameter, 𝜇, to the weight 
changes. 

3.1.2. Resilient back-propagation (RPROP) algorithm 

RPROP considers the sign of derivatives as the indication for 
the direction of the weight update (Riedmiller and Braun, 1993). 
In doing so, the size of the partial derivative does not influence 
the weight step. The following equation shows the adaptation of 
the update values of Δij (weight changes) for the RPROP 

algorithm. For initialization, all are set to small positive values: 
 

𝛥𝑖𝑗(𝑡) =

{
 
 

 
 𝜂

+ × 𝛥𝑖𝑗(𝑡 − 1); 𝑖𝑓
𝛿𝐸

𝛿𝑊𝑖𝑗

(𝑡 − 1)
𝛿𝐸

𝛿𝑊𝑖𝑗

(𝑡) > 0

𝜂− × 𝛥𝑖𝑗(𝑡 − 1); 𝑖𝑓
𝛿𝐸

𝛿𝑊𝑖𝑗

(𝑡 − 1)
𝛿𝐸

𝛿𝑊𝑖𝑗

(𝑡) < 0

𝜂0 × 𝛥𝑖𝑗(𝑡 − 1); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (8) 

 
where 𝜂0 = 0, 0 < 𝜂− < 1 < 𝜂+, 𝜂−,0,+ are known as the update 
factors. Whenever the derivative of the corresponding weight 
changes its sign, this implies that the previous update value is too 
large and it has skipped a minimum. Therefore, the update value 

is then reduced (𝜂−), as shown above. However, if the derivative 

retains its sign, the update value is increased (𝜂+). This will help 
to accelerate convergence in shallow areas. To avoid over-

acceleration, in the epoch following the application of (𝜂+), the 

new update value is neither increased nor decreased (𝜂0) from 

the previous one. Note that the values of 𝛥𝑖𝑗 remain non-negative 

in every epoch. This update value adaptation process is then 
followed by the actual weight update process, which is governed 
by the following equations:  
 

𝛥𝑊𝑖𝑗(𝑡) =

{
 
 

 
 −𝛥𝑖𝑗; 𝑖𝑓

𝛿𝐸

𝛿𝑊𝑖𝑗
(𝑡) > 0

+𝛥𝑖𝑗; 𝑖𝑓
𝛿𝐸

𝛿𝑊𝑖𝑗
(𝑡) < 0

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                (9) 

 
The values of the training parameters adopted for the 

algorithms were determined empirically. 

3.1.3. Levenberg–Marquardt (LM) algorithm 

The LM algorithm (Hagan and Menhaj, 1994) uses the 
approximation to the Hessian matrix in the following Newton-
like update: 

 
𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) − [𝐽

𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒           (10) 

 
where 𝐽 is the Jacobian matrix, 𝑒 a vector of network errors and 𝜇 
a constant. 

3.1.4. scaled conjugate gradient algorithm (SCG) 

The scaled conjugate gradient algorithm (SCG), developed by 
Moller (1990), was designed to avoid the time-consuming line 
search. This algorithm combines the model-trust region approach 
(used in the Levenberg-Marquardt algorithm, described in 
Levenberg-Marquardt), with the conjugate gradient approach. 
See Moller (1990) for a detailed explanation of the algorithm. 

3.1.5. Conjugate gradient backpropagation with Fletcher-
Reeves updates (CGBFR) 

More detail regarding the Conjugate gradient 
backpropagation with Fletcher-Reeves updates can be found in 
Scales (1985). 

3.1.6. BFGS quasi-Newton backpropagation (BFGSQB) 

Newton's method is an alternative to the conjugate gradient 
methods for fast optimization. In optimization, quasi-Newton 
methods (a special case of variable metric methods) are 
algorithms for finding local maxima and minima of functions. 
Quasi-Newton methods are based on Newton's method to find 
the stationary point of a function, where the gradient is 0. 
Newton's method assumes that the function can be locally 
approximated as a quadratic in the region around the optimum, 
and uses the first and second derivatives to find the stationary 
point. In higher dimensions, Newton's method uses the gradient 
and the Hessian matrix of second derivatives of the function to be 
minimized. 

In quasi-Newton methods the Hessian matrix does not need 
to be computed. The Hessian is updated by analyzing successive 
gradient vectors instead. Quasi-Newton methods are a 
generalization of the secant method to find the root of the first 
derivative for multidimensional problems. In multi-dimensions 
the secant equation is under-determined, and quasi-Newton 
methods differ in how they constrain the solution, typically by 
adding a simple low-rank update to the current estimate of the 

jar:file:///C:/Program%20Files/MATLAB/R2009a/help/toolbox/nnet/help.jar%21/backpro7.html#8119
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
http://en.wikipedia.org/wiki/Stationary_point
http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Quadratic_function
http://en.wikipedia.org/wiki/Hessian_matrix
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Secant_method
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Hessian. More detail regarding the BFGS quasi-Newton 
backpropagation can be found in NAG (2012). 

3.1.7. One-step secant backpropagation (OSS) 

The one step secant (OSS) method is an attempt to bridge the 
gap between the conjugate gradient algorithms and the quasi-
Newton (secant) algorithms. This algorithm does not store the 
complete Hessian matrix; it assumes that at each iteration, the 
previous Hessian was the identity matrix. This has the additional 
advantage that the new search direction can be calculated 
without computing a matrix inverse. 

More detail regarding the OSS can be found in Battiti (1992). 

3.2. Bees algorithm 

Bees Algorithm is an optimization algorithm inspired by the 
natural foraging behavior of honey bees to find the optimal 
solution. Fig. 2 shows the pseudo code for the algorithm in its 
simplest form. The algorithm requires a number of parameters to 
be set, namely: number of scout bees (n), number of sites 
selected out of n visited sites (m), number of best sites out of m 
selected sites (e), number of bees recruited for best sites (nep), 
number of bees recruited for the other (m-e) selected sites (nsp), 
initial size of patches (ngh) which includes site and its 
neighborhood and stopping criterion. The algorithm starts with 
the n scout bees being placed randomly in the search space. The 
fitnesses of the sites visited by the scout bees are evaluated in 
step 2. 

 
1. Initialize the solution population. 

2. Evaluate the fitness of the population. 
3. While (stopping criterion is not met) //Forming new population. 

4. Select sites for neighbourhood search. 
5. Recruit bees for selected sites (more bees for the best e sites) and 

evaluate fitnesses. 
6. Select the fittest bee from each site. 

7. Assign remaining bees to search randomly and evaluate their 
fitnesses. 

8. End While 
Fig. 2. Pseudo code. 

 
In step 4, bees that have the highest fitnesses are chosen as 

“selected bees” and sites visited by them are chosen for 
neighborhood search. Then, in steps 5 and 6, the algorithm 
conducts searches in the neighborhood of the selected sites, 
assigning more bees to search near to the best e sites. The bees 
can be chosen directly according to the fitnesses associated with 
the sites they are visiting. Alternatively, the fitness values are 
used to determine the probability of the bees being selected. 
Searches in the neighborhood of the best e sites which represent 
more promising solutions are made more detailed by recruiting 
more bees to follow them than the other selected bees. Together 
with scouting, this differential recruitment is a key operation of 
the Bees Algorithm.  

However, in step 6, for each patch only the bee with the 
highest fitness will be selected to form the next bee population. In 
nature, there is no such a restriction. This restriction is 
introduced here to reduce the number of points to be explored. In 
step 7, the remaining bees in the population are assigned 
randomly around the search space scouting for new potential 
solutions. These steps are repeated until a stopping criterion is 
met. At the end of each iteration, the colony will have two parts to 
its new population representatives from each selected patch and 
other scout bees assigned to conduct random searches (Pham et 
al., 2006). 

4. Simulation results 

In this section we evaluate the performance of proposed 
recognizer. For this purpose we have used the generated patterns 
(see section 2.1). This dataset contains 600 examples of control 

charts. For this study, we have used 60% of data for training the 
classifier and the rest for testing. 

4.1. Performance comparison of different training 
algorithms with row data 

First we have evaluated the performance of the recognizer 
with row data. The training parameters and the configuration of 
the MLP used in this study are shown in Table 1. The MLP 
classifiers were tested with various neurons for a single hidden 
layer and the best networks are selected. 

 
Table 1 
MLP architecture and training parameter. 

The number of layers 2 
Number of output neurons 6 

Learning algorithm 

Back-propagation with momentum 
RProp 

LM 
SCG 

CGBFR 
BFGSQB 

OSS 
The initial weights and basis Random 

Activation function (Hidden layer) Tangent-sigmoid 
Activation function (Output layer) Linear 

 
Table 2 shows the recognition accuracy (RA) of different 

systems. In this table, NNHL means the number neurons in the 
hidden layers. The obtained results are the average of 50 
independent runs. As it is depicted in Table 2, using various 
training algorithms and raw data, the highest accuracy is 98.55%, 
which is achieved by SCG training algorithms.  

 
Table 2 
Recognition accuracy different systems using row data. 

Training algorithm 
RA 
(%) 

NNHL 
Run time 

(Sec) 
Standard 

Back-propagation with 
momentum 

95.03 17 5 6.8 

RPROP 97.67 20 2 2.3 
LM 96.43 24 18 9.5 
SCG 98.55 20 2 1.6 

CGBFR 95.64 18 3 12.8 
BFGSQB 96.34 32 118 6.76 

OSS 97.02 19 2 4.9 

4.2. Performance comparison of different training 
algorithms with shape features 

Table 3 shows the recognition accuracy of different systems. 
As it is depicted in Table 3, using various training algorithms and 
shape feature as input of MLP, the highest accuracy is 99.28%, 
which is achieved by SCG training algorithms.  

 

Table 3 
Recognition accuracy different systems using shape feature. 

Training algorithm 
RA 
(%) 

NNHL 
Run time 

(Sec) 
Standard 

Back-propagation with 
momentum 

98.67 19 3 2.9 

RPROP 99.06 20 1 1.4 
LM 98.52 16 6 2.7 
SCG 99.28 20 1 0.9 

CGBFR 98.84 18 2 7.4 
BFGSQB 98.94 24 45 3.87 

OSS 98.54 16 1 2.8 

4.3. Performance of proposed method (BA+ANN) 

In this experiment to evaluating the performance of the 
proposed method (BA+ANN), ten different runs have been 
performed. The BA finds the best features to gain the fitness 
function maximum. Table 4 shows the coefficient values in the BA 
algorithm. A more detail information about the selected features 
by proposed algorithm (BA+ANN) is shown in Tables 5- 11. It can 
be seen that features 2th, 5 th, 7th and 9 th produced the best 



P. K.  Wong, A. Chua / Annals of Electrical and Electronic Engineering 2(4) 8–13 

 12  

 

accuracy of 99.58%. This result repeated in multiple runs of the 
program and shows that, these features have very good 
discrimination ability for our classes.  

 
Table 4 
Parameters of BA. 

Number of scout bees, n 20 
Number of sites selected for neighborhood search, m 8 
Number of best “elite” sites out of m selected sites, e 4 

Number of bees recruited for best e sites, nep 4 
Number of bees recruited for the other (m-e) selected sites, nsp 4 

Number of iterations, R 100 
 

Table 5 
Selected features for different runs (Back-propagation with momentum). 

Run Features Size of features Correct feature Best fitness 
#1 [2, 5, 7, 9] 4 Yes 99.16 
#2 [1, 2, 5, 7, 8, 9] 6 No 99.02 
#3 [2, 5, 7, 9] 4 Yes 99.16 
#4 [2, 5, 7, 9] 4 Yes 99.16 
#5 [2, 3, 5, 6, 7, 9] 6 No 98.96 
#6 [2, 5, 7, 9] 4 Yes 99.16 
#7 [2, 5, 7, 9] 4 Yes 99.16 
#8 [2, 5, 7, 9] 4 Yes 99.16 
#9 [2, 5, 7, 9] 4 Yes 99.16 

#10 [2, 5, 7, 9] 4 Yes 99.16 
 

Table 6 
Selected features for different runs (RPROP). 

Run Features Size of features Correct feature Best fitness 
#1 [2, 5, 7, 9] 4 Yes 99.16 
#2 [1, 2, 5, 6, 7, 8, 9] 7 No 99.04 
#3 [2, 5, 7, 9] 4 Yes 99.16 
#4 [2, 4, 5, 7, 9] 5 No 99.11 
#5 [1, 2, 3, 5, 6, 7, 9] 7 No 99.12 
#6 [2, 5, 7, 9] 4 Yes 99.16 
#7 [2, 5, 7, 9] 4 Yes 99.16 
#8 [2, 5, 7, 9] 4 Yes 99.16 
#9 [2, 5, 7, 9] 4 Yes 99.16 

#10 [2, 5, 7, 8, 9] 5 No 99.10 
 

Table 7 
Selected features for different runs (LM). 

Run Features Size of features Correct feature Best fitness 
#1 [2, 5, 7, 9] 4 Yes 99.16 
#2 [2, 5, 7, 9] 4 Yes 99.16 
#3 [2, 5, 7, 9] 4 Yes 99.16 
#4 [2, 5, 7, 9] 4 Yes 99.16 
#5 [1, 2, 3, 6, 7, 9] 6 No 99.15 
#6 [2, 3, 5, 7, 9] 5 No 99.04 
#7 [2, 5, 7, 9] 4 Yes 99.16 
#8 [2, 5, 7, 9] 4 Yes 99.16 
#9 [2, 5, 7, 9] 4 Yes 99.16 

#10 [2, 5, 7, 8, 9] 5 No 99.07 
 

Table 8 
Selected features for different runs (SCG). 

Run Features Size of features Correct feature Best fitness 
#1 [2, 5, 7, 9] 4 Yes 99.58 
#2 [2, 5, 6, 7, 9] 5 No 99.31 
#3 [2, 5, 7, 9] 4 Yes 99.58 
#4 [2, 5, 7, 9] 4 Yes 99.58 
#5 [1, 2, 3, 6, 7, 9] 6 No 99.21 
#6 [2, 5, 7, 9] 4 Yes 99.58 
#7 [2, 5, 7, 9] 4 Yes 99.58 
#8 [2, 4, 5, 7, 9] 5 No 99.37 
#9 [2, 5, 7, 9] 4 Yes 99.58 

#10 [2, 5, 7, 9] 4 Yes 99.58 
 

Table 9 
Selected features for different runs (CGBFR). 

Run Features Size of features Correct feature Best fitness 
#1 [1, 2, 5, 7, 9] 5 No 99.01 
#2 [2, 5, 6, 7, 9] 5 No 99.04 
#3 [2, 5, 7, 9] 4 Yes 99.16 
#4 [2, 5, 7, 9] 4 Yes 99.16 
#5 [1, 2, 3, 6, 7, 9] 6 No 99.12 
#6 [2, 5, 7, 9] 4 Yes 99.16 
#7 [2, 5, 7, 9] 4 Yes 99.16 
#8 [2, 4, 5, 7, 9] 5 No 99.11 
#9 [2, 5, 7, 9] 4 Yes 99.16 

#10 [2, 5, 7, 9] 4 Yes 99.16 

Table 10 
Selected features for different runs (BFGSQB). 

Run Features Size of features Correct feature Best fitness 
#1 [2, 5, 7, 9] 4 Yes 99.16 
#2 [2, 3, 5, 6, 7, 9] 6 No 99.10 
#3 [2, 5, 7, 9] 4 Yes 99.16 
#4 [2, 5, 7, 9] 4 Yes 99.16 
#5 [1, 2, 3, 6, 7, 9] 6 No 99.11 
#6 [2, 5, 7, 9] 4 Yes 99.16 
#7 [2, 5, 7, 9] 4 Yes 99.16 
#8 [2, 4, 5, 7, 9] 5 No 99.14 
#9 [1, 2, 3, 4, 5, 7, 9] 7 No 99.06 

#10 [2, 5, 7, 9] 4 Yes 99.16 
 

Table 11 
Selected features for different runs (OSS). 

Run Features Size of features Correct feature Best fitness 
#1 [2, 5, 7, 8, 9] 5 No 99.11 
#2 [2, 3, 5, 6, 7, 9] 6 No 99.14 
#3 [2, 5, 7, 9] 4 Yes 99.16 
#4 [2, 5, 7, 9] 4 Yes 99.16 
#5 [2, 5, 7, 9] 4 Yes 99.16 
#6 [2, 5, 7, 9] 4 Yes 99.16 
#7 [2, 5, 7, 9] 4 Yes 99.16 
#8 [2, 4, 5, 7, 9] 5 No 99.10 
#9 [1, 2, 3, 4, 5, 9] 6 No 99.13 

#10 [2, 5, 7, 9] 4 Yes 99.16 

4.4. Comparison and discussion 

For comparison purposes, Table 12 gives the classification 
accuracies of our method and previous methods applied to the 
same database. As can be seen from the results, proposed method 
obtains an excellent classification accuracy. 

 
Table 12 
A summary of different classification algorithms together with their reported 
results used measures of the accuracy. 

Ref. no Year Classifier RA (%) 
Pharm and Oztemel (1995) 1992 MLP 94.30 

Sağıroğlu et al. (2009) 1992 MLP 93.73 
Pham and Oztemel (1994) 1994 LVQ 97.70 

Pham and Wani (1997) 1997 MLP 99.00 
Hassan et al. (2003) 2003 MLP 97.18 

Le et al. (2004) 2008 MLP(RSFM) 97.46 
Cheng and Ma (2008) 2008 PNN 95.58 

Gauri and Chakraborty (2009) 2009 MLP 97.22 
Perry et al. (2001) 2011 MLP 99.21 

This work - MLP (SCG) 99.58 

5. Conclusion 

With the widespread usage of automatic data acquisition 
system for computer charting and analysis of manufacturing 
process data, there exists a need to automate the analysis of 
process data with little or no human intervention. This study 
presents methods for improving ANN performance in three 
aspects: feature extraction, feature selection and ANN training 
algorithm. The highest level of accuracy obtained by MLP with 
SCG training algorithm using unprocessed data was 98.55%. The 
proposed method improves the accuracy up to 99.58% by using 
selected shape features as the classifier inputs. 
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