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Reactive power management is a complicated and nonlinear problem. With the development of computer-based 
methods, some new methods have been proposed for this problem. The nature-based optimization algorithms 
are an efficient way of solving the nonlinear and not differentiable functions. One of the interesting of these 
algorithms is a genetic algorithm or GA. In this study, we proposed the application of a genetic algorithm for 
solving reactive power optimization. The proposed method must find the best parameters of power network 
including the generator node voltage, the transformers tap situation, and the parallel compensators value. In 
existing electrical power networks, these variables don’t consider and all capacity of the system didn’t use. In 
the traditional power network, the voltage profile is weak and the active power loss in transmission lines is 
high. With optimizing the reactive power control parameters, the voltage profile improved and the active power 
loss will be reduced significantly. In order to test the proposed system, the IEEE standard 25-node network is 
chosen. The simulation results show that the proposed method has a good effect on system performance. 
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1. Introduction* 

In modern electrical power network many problem merged 
such as weak voltage profile, active power loss in transmission 
lines, low power factor. These problems can be removed or 
modified by reactive power compensation. There are many 
different methods and techniques for reactive power 
compensation. The first one is capacitor placement in different 
nodes of electrical power network. In last year's many intelligent 
approaches have been proposed for optimal capacitor placement 
in power network. These methods are based on nature based 
optimization algorithm (Lee et al., 2015; Vuletić and Todorovski, 
2014; Shuaib et al., 2015; Mukherjee and Goswami, 2014; 
Elsheikh et al., 2014; Sultana and Roy, 2014). The second method 
is FACTS devices that introduced in 1980s. There are several 
FACTS devices such as SVC, STATCOM and UPFC. In last year's 
many techniques based on FACTS devices are introduced for 
system quality improvement. Also many control system have 
been proposed to control these devices (Sreejith et al., 2015; 
Balamurugan et al., 2015; Dash et al., 2015; Gasperic and Mihalic, 
2015; Castoldi et al., 2014; Kumar and Mittapalli, 2014). 

The mentioned methods to reactive power control have some 
financial investment. These problems restrict the usage of these 
methods. The one efficient method to reactive power control is 
setting of reactive power control variables. The setting of reactive 
power control variables involve of tuning of synchronous 
generators voltage magnitude, the position of power 
transformers tap, the value of parallel capacitors, the value of 
inductors. In this problem the voltage of synchronous generators 
is continuous variable and the position of power transformers 
tap, the value of parallel capacitors, the value of inductors are 
discrete. The management of reactive power is very complicated 
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optimization problem. This problem has many limitation and 
variables that must be considered. All the variables have its 
special search space. Also the characters of each variable are 
special and are independent with other variables. For solving this 
nonlinear and complicated optimization problem, the powerful 
algorithm is needed. 

With development in computer capability in computing and 
solving nonlinear problem, the solution of this problem is come 
easier. In last decades the nature based optimization algorithms 
are emerged such as genetic algorithm (GA), particle swarm 
optimization (PSO) algorithm, bee's algorithm (BA), imperialist 
competitive algorithm (ICA) and cuckoo optimization algorithm 
(COA) (Zhang et al., 2015; Yu et al., 2015; Gopalakrishnan and 
Kosanovic, 2015; Chen et al., 2015; Cheng and Jin, 2015; Li et al., 
2015; Liu et al., 2015). One of the most efficient and powerful of 
these algorithms is genetic algorithm. This optimization 
algorithm has many applications in many areas of industrials and 
sciences (Quiroz-Castellanos et al., 2015; Anglada and 
Garmendia, 2015; Lu et al., 2015; Király and Abonyi, 2015; Duan 
et al., 2015; Wang et al., 2015; Changdar et al., 2015; Herath et al., 
2015). In this paper an intelligent technique is proposed for 
reactive power variable setting. In each optimization algorithm to 
features are essential: exploration and extraction. The 
exploration feature is the capability of finding the global 
solution's vicinity. The extraction feature is capability of 
optimization algorithm to find the global solution from this 
vicinity. The genetic algorithm has good exploration and 
extraction capability. Therefore in this study exploration and 
extraction is selected as optimization algorithm.  

Wu et al. (1998) suggested application of optimal reactive 
power dispatch by modified GA version for reactive power 
management. Varadarajan and Swarup (2008) introduced DE 
algorithm for best reactive power management. Zhang et al. 
(2010) have introduced multi-group self-adaptive DE algorithm 
for reactive power forecasting and management. Nedwick et al. 
(1995) have proposed an intelligent technique for reactive power 
optimization in power network. The proposed system uses fix 
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capacitors in several nodes. Dong et al. (2005) have been 
introduced a smart approach to reactive power management by 
Bender’s decomposition approach. Yang et al. (2007) constrained 
programming accounting uncertain factors is used to reactive 
power optimization. In this paper the power that generated by 
synchronous generators and the load consumed by final load 
modeled as distribution variables. In Wu et al. (2008); an 
intelligent technique based on OPF is proposed for reactive 
power management in heavy load power network condition. He 
et al. (2008) proposed the optimization method to reactive 
power prediction with considering the voltage profile. In Zhang 
et al. (2009) researchers proposed a computational system in 
order to reactive power market clearing. The simulation results 
show good performance.   

In this paper an intelligent technique based on GA is 
proposed for reactive power prediction for next load condition. 
More details about the proposed method are described in next 
sections. The proposed method enhances the voltage profile 
significantly and reduces the active power loss. In the proposed 
method, reactive power is reserved to be used in emergency 

situations. In the proposed method, the voltage based reactive 
power applied to compute the reactive power demand. The 
description about GA is come in section two. Section 3 presents 
the formulation of power system. Section 4 presents proposed 
method and some simulation results. The section 5 concludes the 
study.  

2. Genetic algorithm 

In soft computing science, genetic algorithm is an 
optimization algorithm that models the process of natural 
selection in animals and human. The genetic algorithm is used for 
many optimization problems that are very complicated and 
nonlinear. Also genetic algorithm can be used for discrete 
optimization problem. The genetic algorithm is one of the 
evolutionary algorithms (EA) that generate random solutions to 
optimization problems that this procedure is based on natural 
events in human or animal’s life. The genetic algorithm has 
several main operators: elitism, crossover, mutation and roulette 
wheel. The flowchart of genetic algorithm is depicted in Fig. 1. 

 

Start

Generate initial 
population

Calculate fitness of 
individuals

Satisfy stop 
criterion

End

Roulette selection of 
parents

Crossover to 
produce children

Mutation of 
childeren

Calculate fitness of 
children

New Generation by 
Elitism

 
Fig. 1: GA flowchart 

 

In the genetic algorithm like other nature based optimization 
algorithms, initial random population is generated. The each 
candidate in initial random population is called chromosome. 
These chromosomes are like particle in particle swarm 
optimization algorithm, bee in bee’s algorithm or countries in 
imperialist competitive algorithm. The chromosomes must be 
generated in predetermined search space. The low boundary and 
maximum boundary of each problem is unique. The optimization 
process starts with initial random population, and in each 
iteration or generation, the fitness function is calculated. Based 
on the evaluated fitness function for each chromosome, the 
elitism and crossover is performed. The chromosomes with high 
level of fitness are randomly chosen from the existing population, 
and each chromosome is modified by crossover operator. The 
new generated population is used in following iteration. The 
same procedure is performed iteratively. In any iteration the 

stopping criteria must be checked. If the stopping criteria are 
satisfied, the algorithm will stop the searching procedure. Fig. 2 
shows the crossover operation. Also Fig. 3 shows the mutation 
operation. Fig. 4 shows the pseudo code of GA.  

3. Problem formulation 

In this paper reactive power reserve is investigated and new 
smart approach is proposed for this complicated and nonlinear 
problem. For this purpose GA is used. The GA is used to find the 
optimal parameters of reactive power control variables. The 
objective function of this optimization problem is as follow (Arya 
et al., 2010):  
 

𝐽 = ∑ 𝑝𝑔𝑘(𝑄𝑔𝑘 −𝑄𝑞𝑘)𝑘                 (1) 

 

http://en.wikipedia.org/wiki/Evolutionary_algorithm
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Fig. 2. Crossover operation. 

 

 
Fig. 3. Mutation operation. 

 

 
Fig. 4. The pseudo code of GA algorithm. 

 
In the fitness function, some limitations and constraints are 

considered. These limitations and constraints are described 
below: 

 
(a) Power flow limitations and constraints. The mathematical 

formulation of this limitation is defined as follow:  
 
𝑃 = 𝑓(𝑉, 𝛿)

𝑄 = 𝑔(𝑉, 𝛿)
                 (2) 

 
(b) Limitation and relation of node voltages and next predicted 

load situation and the level of reactive power demand. Eq. 3 
defines these conditions: 

 

𝑉
𝑖
≤ 𝑉𝑖

𝑜 ≤ 𝑉𝑖

𝑉
𝑖
≤ 𝑉𝑖

𝑝
≤ 𝑉𝑖

i ∈ NL

                 (3) 

 
(c) Limitation on Jacobin matrix and its related determinant. 
 

𝜆min,𝑝 ≥ 𝜆min,𝑡ℎ                 (4) 

 
(d) The boundaries of generated reactive power in power 

network. Eq. 5 shows this limitation. 

𝑄
𝑔𝑘

≤ 𝑄
𝑔𝑘𝑝

≤ 𝑄
𝑔𝑘
k = 1,2, . . . , NG               (5) 

 
(e) Limitation on control parameters: 
 

𝑋
𝑖
≤ 𝑋𝑖 ≤ 𝑋𝑖i ∈ NC                (6) 

 

In the proposed method, 𝑝
𝑔𝑘

 is generation association factor. 

This factor is calculated for next forecasting load condition. For 
this purpose first obtain minimum eigenvalues and their related 
vectors. For simplicity the reduced Jacobin matrix is applied. The 
procedure is as follow:  

 

[
𝐽
1
𝐽
2

𝐽
3
𝐽
4

] [
Δ𝛿

Δ𝑉
] = [

0

Δ𝑄
]                (7) 

𝐽
1
Δ𝛿 + 𝐽

2
Δ𝑉 = 0 

Δ𝛿 = −𝐽1
−1𝐽2Δ𝑉                 (8) 

[𝐽
4
− 𝐽

3
𝐽
1
−1𝐽

2
][Δ𝑉] = [Δ𝑄] 

𝐽
𝑅
= 𝐽

4
− 𝐽

3
𝐽
1
−1𝐽

2
                 (9) 

Δ𝑄 = [𝜉
𝑖
]

Δ𝑉 =
𝜉
𝑖

𝜆𝑖

Δ𝛿 = −𝐽
1
−1𝐽

2
Δ𝑉 = −

(𝐽
1
−1𝐽

2
𝜉
𝑖
)

𝜆𝑖

𝑉 = 𝑉 + Δ𝑉

𝛿 = 𝛿 + Δ𝛿

            (10) 

 
In next step, the demanded reactive power that must be 

injected is computed as follow: 
 

𝑝
𝑔𝑘

=
Δ𝑄𝑔𝑘

max𝑝Δ𝑄𝑔𝑝

               (11) 

 
The steps of proposed method are as follow: 
 

1. The parameters of power network, including the reactive 
power parameters, transmission lines impedance, 
transformers power.  

2. Compute the load flow for network. Compute all nodes 
voltage value and their angles. 

3. Compute the following condition demanded power. 
4. Compute the load flow calculation for next load condition. 
5. Generate the initial population for optimization algorithm. 
6. Evaluate the fitness function for generated random 

chromosomes. 
7. Do elitism operation. 
8. Apply crossover. 
9. Apply mutation. 
10. Check the stop criteria. If it is satisfied, go to next step, else go 

to step 6. 
11. Finish. 

4. Simulation results 

In this section the performance of proposed method is 
evaluated. For this purpose IEEE standard system is selected. The 
selected is power network system has 25 terminals. The chosen 
system has twelve parameters that can affect the generation of 
reactive power. In this system there are five generation terminal 
and the other remaining terminals are load nodes. The control 
parameters are voltages of generator terminals, parallel 
compensations and on line tap changeable transformers. The 
parallel compensations are placed at 22, 23, 24 and 25th terminal. 
The on line tap changeable transformers are located in 6, 13 and 
35th transmission lines. The nominal values of voltages and 
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impedance of system are listed in Table 1. Also Table 2 shows the 
system constants. Table 3 shows the voltage boundaries.  

 
Table 1 
Parameters and constants of power network. 

Value Parameter 
2.66𝑝𝑢 

𝐸max1 

2.17𝑝𝑢 
𝐸max2 

2.11𝑝𝑢 
𝐸max3 

2.32𝑝𝑢 
𝐸max4 

2.14𝑝𝑢 
𝐸max5 

1.00𝑝𝑢 
𝑋𝑑1 

1.16𝑝𝑢 
𝑋𝑑2 

1.08𝑝𝑢 
𝑋𝑑3 

1.21𝑝𝑢 
𝑋𝑑4 

1.13𝑝𝑢 
𝑋𝑑5 

   
Table 2 
System parameters. 

𝑄
𝑔𝑘

 Maximum value for reactive power 

𝑄
𝑔𝑘(𝑟𝑒𝑠)

 Value of reactive power reserved 

𝑉𝑔 The value of generator voltage 

𝐸 The generator voltage (internal voltage) 

𝑋𝑑 Impedance of generator 

𝐼�̃�𝑘 armature current for generators 

𝑉 The voltage in terminals 
𝛿 Phase 
𝑁𝐶 The number of optimization parameters 
𝑁𝐿 The number of consuming terminals 
𝑁𝐺 The number of nodes that generate active power 
𝐽 Fitness function 

𝑟𝑎𝑛𝑑𝑗 Random number 

𝛼 Factor 

𝑗
𝑟𝑎𝑛𝑑

 Chancily number 

𝑥
𝑖
, xi The boundaries 

𝑋𝑖

𝑘
 Location of individual 

C Crossover rate 
𝑁𝐼𝑇,𝑁𝐼𝑇max The maximum iteration 

𝑃𝑏𝑒𝑠𝑡(𝑖)

𝑘
 Best individual 

𝑃𝑏𝑒𝑠𝑡

𝑘
 position of the best individual of the whole swarm 

 
Table 3 
Voltage boundaries. 

Boundaries Node 
0.95– 1.15 pu PV-bus 
0.00–0.055 pu Parallel capacitor 

0.90–1.10 pu 
On line tap changeable 

transformers 
-0.0500 pu to 3.0000 pu First generator 
-0.0500 pu to 1.0000 pu Second generator 
-0.0500 pu to 1.0000 pu Third generator 
-0.0500 pu to 1.0000 pu Forth generator 
-0.0500 pu to 1.0000 pu Fifth generator 

 

The other power system constants and parameters are as 
follow. The total active power is 15.731 pu and reactive power is 
4.828 pu. The proximity indicator is 0.363 and the fitness 
function is 2.33. Table 4 shows the voltage of power network 
before optimization.  

The obtained results after optimization are listed in Table 5. 
The parameters of GA have high effect on its performance. For 
this purpose several collection of these parameters are tested. 
Also in Fig. 5 the increasing of fitness function during the 
optimization is plotted. It is clear that the optimization has good 
effect on fitness function. Also Table 6 shows the optimized 
control variables. 

 

Table 4 
Voltage before optimization. 

Values (PU) 
Control 

parameter 
Values (PU) 

Terminal 
voltages 

1.014 𝑉𝐺1  1.0061 𝑉𝑛6 

1.093 𝑉𝐺2  1.0056 𝑉𝑛7 

1.076 𝑉𝐺3  0.8521 𝑉𝑛8 

1.054 𝑉𝐺4  0.8651 𝑉𝑛9 

1.049 𝑉𝐺5  0.8654 𝑉𝑛10 

0.0241 𝐵𝐶,𝑆𝐻22 0.9016 𝑉𝑛11 

0.0237 𝐵𝐶,𝑆𝐻23 0.9351 𝑉𝑛12 

0.0231 𝐵𝐶,𝑆𝐻24 0.8962 𝑉𝑛13 

0.0229 𝐵𝐶,𝑆𝐻25 1.0667 𝑉𝑛14 

0.9156 𝑇𝐴𝑃𝑇6 0.8521 𝑉𝑛15 

0.9154 𝑇𝐴𝑃𝑇13 0.8619 𝑉𝑛16 

0.9187 𝑇𝐴𝑃𝑇35 0.8654 𝑉𝑛17 

  0.9013 𝑉𝑛18 

 0.9336 𝑉𝑛19 

 0.8962 𝑉𝑛20 

 1.0667 𝑉𝑛21 

 0.8450 𝑉𝑛22 

 0.8642 𝑉𝑛23 

 0.9062 𝑉𝑛24 

 0.8641 𝑉𝑛25 

 
Table 5 
Obtained results after optimization. 

Fitness function Mutation rate Crossover rate Case 

14.431 0.1 0.7 1 
13.87 0.15 0.7 2 
14.04 0.2 0.7 3 
14.16 0.25 0.7 4 
14.12 0.3 0.7 5 
13.97 0.1 0.75 6 
13.76 0.15 0.75 7 
14.53 0.2 0.75 8 
14.41 0.25 0.75 9 
13.98 0.3 0.75 10 
14.17 0.1 0.8 11 
14.21 0.15 0.8 12 
14.21 0.2 0.8 13 
13.95 0.25 0.8 14 
13.76 0.3 0.8 15 
14.53 0.1 0.85 16 

14.431 0.15 0.85 17 

13.83 0.2 0.85 18 

14.04 0.25 0.85 19 

14.01 0.3 0.85 20 

14.18 0.1 0.9 21 

14.22 0.15 0.9 22 

13.76 0.2 0.9 23 

14.53 0.25 0.9 24 

14.12 0.3 0.9 25 

13.97 0.1 0.95 26 

13.76 0.15 0.95 27 

14.53 0.2 0.95 28 

13.88 0.25 0.95 29 

14.31 0.3 0.95 30 

5. Conclusion 

The power system is very complicated and nonlinear. There 
is no linear relation among different sections of this network. In 
this study an intelligent system proposed for reactive power 
optimal management. The proposed is based on GA. The 
computer simulation results show that the optimization has very 
high impact on power quality. After optimization, the voltage 
profile is enhanced significantly. 
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Fig. 5. Increasing of fitness function during optimization procedure. 

 
Table 6 
Control parameters after optimization. 

Values (PU) 
Control 

parameter 
Values (PU) 

Terminal 
voltages 

1.094 𝑉𝐺1  1.0065 𝑉𝑛6 

1.01 𝑉𝐺2  1.0051 𝑉𝑛7 

1.02 𝑉𝐺3  1.0032 𝑉𝑛8 

1.021 𝑉𝐺4  0.9976 𝑉𝑛9 

1.026 𝑉𝐺5  1.0043 𝑉𝑛10 

0.0232 𝐵𝐶,𝑆𝐻22 0.9965 𝑉𝑛11 

0.0269 𝐵𝐶,𝑆𝐻23 0.9954 𝑉𝑛12 

0.0481 𝐵𝐶,𝑆𝐻24 1.0021 𝑉𝑛13 

0.0375 𝐵𝐶,𝑆𝐻25 1.0001 𝑉𝑛14 

0.9201 𝑇𝐴𝑃𝑇6 0.9934 𝑉𝑛15 

0.9219 𝑇𝐴𝑃𝑇13 1.0043 𝑉𝑛16 

1.043 𝑇𝐴𝑃𝑇35 0.9962 𝑉𝑛17 

   0.9951 𝑉𝑛18 

   1.0087 𝑉𝑛19 

   1.0076 𝑉𝑛20 

   0.9995 𝑉𝑛21 

   1.0056 𝑉𝑛22 

   1.0003 𝑉𝑛23 

   1.0021 𝑉𝑛24 

   0.9959 𝑉𝑛25 
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